Search results

Search for "electrical transport" in Full Text gives 38 result(s) in Beilstein Journal of Nanotechnology.

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • shape control are very limited in those cases. Conventional electron beam lithography (EBL) reaches the resolution of a few nanometers. However, it leaves residual resists on the surface [9], which strongly affects electrical transport properties [10]. A similar high resolution can be achieved with e
PDF
Album
Full Research Paper
Published 07 Feb 2024

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • these electrical properties with the facile synthesis of one-dimensional nanostructures may bring potential applications of this material in nanoscale optoelectronic integrated devices. However, only a few works have been dedicated to studying the electrical transport in Te-based one-dimensional
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • the power factor (PF = S2σ) which is connected with the electrical transport [8][9] and the lowest value of κtot [10]. To date, a considerable amount of research has been performed to enhance the ZT value. For instance, by lowering the value of the lattice thermal conductivity (through all-scale
  • -type Bi-doped SnSe single crystal also gives a high ZT value of 2.2 (along the b axis) at 773 K [37]. Motivated by these prominent TE performances, which were due to ultra-low thermal conductivity along with modest electrical transport properties, SnSe-based TE alloys have drawn considerable attention
PDF
Album
Full Research Paper
Published 05 Oct 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • irradiation has been used to introduce lattice defects into VO2 nanowires with which to control the conduction mechanisms of thermal and electrical transport in this material [71]. By performing a dose series and measuring the thermal and electrical conductivities of helium ion-irradiated VO2 around its
PDF
Album
Review
Published 02 Jul 2021

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • of well-performing monolayer TMD films [3][4][5], leading to viable large-scale integration of on-chip TMD FETs. With device miniaturization, it becomes key to understand the impact of defects such as chalcogen vacancies on the electrical transport properties of FETs based on 2D semiconductors. This
PDF
Album
Full Research Paper
Published 04 Sep 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • pA is depicted in Figure 5c. These results are in good agreement with the previous work reported by some of the authors [17]. Magneto-electrical-transport study To determine the critical superconducting parameters in NWs grown at 0.65, 1.3, and 2.18 pA (Figure 6 and Table 2), a magneto-electrical
  • . Magneto-electrical transport study The magneto-electrical transport measurements on the NWs were carried out using a ''Physical Property Measurement System'' (PPMS), from Quantum Design equipped with a helium-3 refrigerator insert. (a–d) SEM images of hollow NWs grown by He+ FIBID; (a) ion beam current
  • transport study using the typical four-point-probe configuration has been performed. Following the procedure described in [17], first 3D NWs were placed flat on the SiO2 layer of a Si/SiO2 substrate by means of a nano-manipulator. Then, four Pt FIBID contacts were grown to connect the NWs to pre-patterned
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • tunneling [9]. Graphene has similar properties as graphite and is expected to exhibit similar templating effects as observed earlier on graphite due to its sp2-hybridized structure. The vertically stacked monoclinic domains on the graphene surface provide an uninterrupted path for electrical transport and
PDF
Album
Full Research Paper
Published 19 May 2020

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • the electronic structure, the electrical transport properties can be obtained using the Boltzmann transport theory and the constant scattering time approximation as implemented in the BoltzTraP code [23]. To get reliable electrical transport coefficients, a denser k-point mesh of 40 × 40 × 1 is used
  • the HSE06 hybrid functional potential, we use the PBE potential to get the electrical transport properties of the MoO3 monolayer in the following work. The phonon dispersion in the high-symmetry directions of the first Brillouin zone of the MoO3 monolayer is plotted in Figure 1c. There is no imaginary
  • with temperature, the thermal conductivity of the lattice of the MoO3 monolayer decreases gradually with increasing temperature following a 1/T dependence like most crystalline materials. In Figure 2a–c, we demonstrate the electrical transport properties of the MoO3 monolayer as a function of the
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • applied in standard lithography processes and that, inevitably, modify the electrical proprieties of graphene. By Raman spectroscopy and electrical-transport investigations, we correlate the room-temperature carrier mobility of graphene devices with the size of well-ordered domains in graphene. In
  • chemical contamination of graphene in lithography processes [11]. Because of this, in the present work we investigate by Raman spectroscopy and electrical transport measurements the effects of different post-photolithography cleaning methods on the yield and performance of CVD-based graphene devices
  • performed Raman spectroscopy and electrical transport measurements, at room temperature, to correlate the size of well-ordered domains in graphene with its carrier mobility. The Raman spectroscopy was performed using an InVia Renishaw Raman spectrometer with a 514.5 nm laser and the electrical transport
PDF
Album
Full Research Paper
Published 05 Feb 2019

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • response/recovery times. The various origins of these properties are commonly assigned to the following two phenomena: (i) a surface plasmon resonance (SPR) effect of plasmonic gold nanoparticles (Au NPs) could certainly take place and contribute to the electrical transport behavior for Au-decorated ZnO
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • interface at low (123 K) temperatures [85]. Studies of intimate ZnO nanowire–Au contacts have also shown that the mechanism of nanoscale electrical transport through the potential barrier depends on the relation between contact area and diameter of the nanowire, allowing a controllable transition from
PDF
Album
Review
Published 25 Jan 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • material or doping interfaces and at defects or constrictions, but also in areas of strong local thermal insulation. To differenciate between different origins of hot spots from temperature data alone is oftentimes not possible. Nanometre-sized hot spots can strongly influence electrical transport through
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • incomplete dissociation of organometallic precursor adsorbate molecules usually leads to codeposition of organic compounds into the metal deposits [3][8][12][32][33][34][35]. This unwanted deposition degrades the electrical transport properties of the deposit, thus limiting the applicability of the FEBID
  • through low-power light irradiation enables the conversion of the amorphous phase into nanocrystalline graphite. Moreover, the degree of graphitisation strongly depends on the substrate material [63]. Electrical transport characterisation The electrical resistances of the FEBID deposits were measured at
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • assemblies [107]. The following sections discuss the effect of ligands in the dry film and processes to modify them. Table 2 provides an overview of the correlation between coinage metal, ligand, deposition method, and film conductivity. 3.1 Conductivity Electrical transport is sensitive towards the barrier
PDF
Album
Review
Published 07 Dec 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • the coating is shown schematically in Figure 6b. For normal electrical transport, the presence of the nanoclay acts as a rectangular potential barrier with thickness of 1 nm, assuming that no other conduction paths exist. This is of course an idealization, but it offers useful physical insight. Since
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • (metallo)phthalocyanines as the organic part and different inorganic materials has been the explored with respect to its application potential in a comprehensive recent review [43]. Results Local electrical transport characteristics and morphology characteristics of nanostructured CuTPP(OMe)4 on Ni
  • processes, where thin films are required. Therefore, the understanding of the electrical transport properties of (metallo)porphyrin compounds (down to the nanoscale) is a crucial step for a reliable implementation in devices [10]. When performed at the nanoscale level, for example via spectroscopic
  • measurements [46]. Despite of this, due to the molecular aggregation and dendrite-layered organization of the films, which may induce interface defects, a local inhomogeneity of the electrical transport was detected. The distribution of conducting sites on the organic surface and a transport regime were
PDF
Album
Review
Published 29 Aug 2017

Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

  • Sreetama Banerjee,
  • Daniel Bülz,
  • Danny Reuter,
  • Karla Hiller,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2017, 8, 1502–1507, doi:10.3762/bjnano.8.150

Graphical Abstract
  • Keithley 2636A SYSTEM source-meter unit in the auto-range mode. The magnetic field was applied perpendicular to the electrical transport channel and to the substrate plane, using an electromagnet. It should be mentioned, though, that previous reports showed OMAR to be independent of the sign and direction
  • of the weakly bound e–h pairs into charge carriers available for the electrical transport is influenced by an applied magnetic field, in favour of the latter effect [9][14]. An applied magnetic field will thus trigger an increase in the conductance of the device [9][14]. It should be noted that
PDF
Album
Supp Info
Letter
Published 21 Jul 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • , films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films
  • fabricated by means of optical lithography and standard contact deposition routes. As the global back gate to the FET devices the highly doped Si wafer under the 90 nm SiO2 film, onto which the MoS2 had been deposited, was employed. Electrical transport characteristics have been tested by measuring the drain
  • conduction behaviour could be related to both chemical composition and structure and will be discussed in the following. First, Mo/S stoichiometry variations in the MoS2 film could contribute to unexpected variations in electrical transport. For instance, for transistor devices based on CVD MoS2 monolayers
PDF
Album
Full Research Paper
Published 22 May 2017

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • conditions when the samples are examined at the nanoscale, such that sequential AFM measurements, as demonstrated here, can be extremely useful in further understanding and optimizing PSC performance. Conclusion We report morphological and electrical transport property characterization of PCBM surface
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

  • Aurora Piazza,
  • Filippo Giannazzo,
  • Gianpiero Buscarino,
  • Gabriele Fisichella,
  • Antonino La Magna,
  • Fabrizio Roccaforte,
  • Marco Cannas,
  • Franco Mario Gelardi and
  • Simonpietro Agnello

Beilstein J. Nanotechnol. 2017, 8, 418–424, doi:10.3762/bjnano.8.44

Graphical Abstract
  • [1]. Graphene (Gr) is a 2D carbon material with zero-energy band gap and turned out to be relevant because of its electrical, transport and optical properties. It is considered the lead example of the emerging 2D solids [2][3][4]. For example, optical transparency and bipolar charge carrier
PDF
Album
Full Research Paper
Published 10 Feb 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • bending tests. The electrical transport was investigated as a function of the applied stress. The structural and strain properties of the polymer composite material were studied under stress by infrared thermography and micro-Raman spectroscopy. Keywords: graphene; graphite; IR thermography; micro-Raman
  • factor on the order of 50. The electrical features are consistent with an intergrain electrical transport mechanism among graphene platelets undergoing strain solicitations. The tensile strain of the PMMA/graphene structure during the bending test was confirmed by IRT and μ-RS measurements. The strain
  • bending) due to intramolecular forces occurring between graphene and PMMA substrate. The GF results were on the order of 40– 50. Note that this value is too high to account for the observed resistance change solely in terms of electronic modifications of the graphene itself [3]. An intergrain electrical
PDF
Album
Full Research Paper
Published 03 Jan 2017

Fingerprints of a size-dependent crossover in the dimensionality of electronic conduction in Au-seeded Ge nanowires

  • Maria Koleśnik-Gray,
  • Gillian Collins,
  • Justin D. Holmes and
  • Vojislav Krstić

Beilstein J. Nanotechnol. 2016, 7, 1574–1578, doi:10.3762/bjnano.7.151

Graphical Abstract
  • Ireland 10.3762/bjnano.7.151 Abstract We studied the electrical transport properties of Au-seeded germanium nanowires with radii ranging from 11 to 80 nm at ambient conditions. We found a non-trivial dependence of the electrical conductivity, mobility and carrier density on the radius size. In particular
  • have quasi one-dimensional character as reflected by the extracted screening lengths. Keywords: electrical transport; germanium nanowires; quasi-1D confinement; screening length; VLS growth; Results and Discussion Synthetic germanium nanowires (Ge NWs) have been proposed as potential next-generation
  • NWs. 3D Debye and 1D screening length λ(1D) as function of carrier density Nd. NW radius sizes (grey symbols) are plotted as a reference. Green triangles show the corresponding surface-to-volume ratios. Supporting Information Supporting Information File 206: Extraction of intrinsic electrical
PDF
Album
Supp Info
Letter
Published 02 Nov 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • concentrations of acetone is greater compared to the pristine ZnO nanostructures. In addition to providing extra surface area for the adsorption sites and for the reaction with the analytes, the RGO platelets also may play a critical role in the electrical transport. RGO platelets reduce the height of the
PDF
Album
Full Research Paper
Published 10 Oct 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • . The photoresponse under UV excitation is sizeable with a higher quantity of the agglomerated HfO2:CNT density. The I–V characteristic is still mainly linear, with a relatively weak decrease of the resistivity, which is consistent with the fact that the electrical transport is dominated by the
PDF
Album
Full Research Paper
Published 26 Jul 2016

Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

  • Kuang-Yang Kou,
  • Yu-En Huang,
  • Chien-Hsun Chen and
  • Shih-Wei Feng

Beilstein J. Nanotechnol. 2016, 7, 75–80, doi:10.3762/bjnano.7.9

Graphical Abstract
  • , doping impurities, such as B, Al, and Ga, can improve the electrical transport properties of ZnO [18]. There are two benefits to using a B-doped ZnO (ZnO@B) film as the TCO layer. First, B has the smallest ionic radius among the three dopants (B3+: 0.23Å, Al3+: 0.54 Å, Ga3+: 0.62 Å,), which results in
  • investigation. Experimental Synthesis of ZnO@B thin films by LPCVD The polar c-plane ZnO samples were grown on a sapphire substrate at 170 °C at a pressure of 0.6 Torr in a LPCVD reactor. DEZ and H2O were used as the precursors for Zn and O, respectively. ZnO was doped with B to improve the electrical transport
PDF
Album
Full Research Paper
Published 20 Jan 2016
Other Beilstein-Institut Open Science Activities